

Методы определения температур смешивания и уплотнения

Технический директор ООО «Синергия Ойл Групп»

Канд. хим. наук

Житов Роман

Начальник испытательного центра ООО «Байкальский битумный терминал»

Лукина Виктория

г. Иркутск, 2024г.

- ✓ Собственная аттестованная лаборатория с системой контроля качества
- ✓ Высококвалифицированный штат лаборатории 8 человек(2 кандидата химических наук)
- ✓ Компетенции специализированной лаборатории :
 - Контроль качества продукции, выпускаемой на площадке
 - Инженерно-технологическая поддержка битумного бизнеса;
 - Разработка новых и модификация существующих технологий производства битумных материалов;
 - Разработка технологической и нормативно-технической документации производства битумных материалов;
 - Проведение курсов повышения квалификации персонала;
 - Испытание соответствия качества битумных вяжущих по российским и зарубежным стандартам

Определение температур смешивания и уплотнения

ГОСТ 58406.2-2020 (Приложение В)

ГОСТ 58401.13-2019 (Приложение Б)

Подбор температур по значению вязкости

Использование значения динамической вязкости по ГОСТ 33137 при температуре в интервале от 100°C до 175°C

Расчетный метод

Использование значения сдвиговой устойчивости (исходного битумного вяжущего по ГОСТ Р 58400.10, при температуре испытаний от 34°C до 88°C) и динамической вязкости при 135°C.

или

Берем 2 динамические вязкости (Например: при 135°C и 165°C).

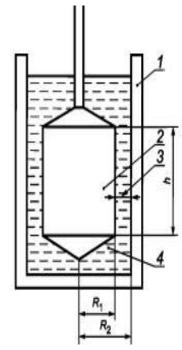
Графический метод

Построение графика зависимости динамической вязкости от температуры в логарифмических координатах в виде прямой линии.

ДИНАМИЧЕСКАЯ ВЯЗКОСТЬ ГОСТ 33137-2014.

Сущность метода

Настоящий метод испытаний заключается в измерении относительного сопротивления течению, вызванному сдвиговым воздействием на битум вращающимися элементами конфигурации.


Динамическую вязкость вычисляют как отношение между приложенным напряжением сдвига и скоростью сдвига.

Вискозиметр BROOKFILD DV2T

Схема конфигурации (принцип устройства)

- 1 контейнер для битума; 2 валик;
 - 3 толщина рабочего слоя битума;
- 4 испытуемый битум; R_1 радиус валика; R_2 — внутренний радиус контейнера

Сдвиговая устойчивость ГОСТ Р 58400.10-2019

Настоящий метод заключается в оценке сдвиговой устойчивости битумного вяжущего путем осцилляционной сдвиговой деформации образца и определения значений комплексного модуля сдвига и фазового угла.

1 – верхний диск (подвижный) 2 – нижний диск (неподвижный)

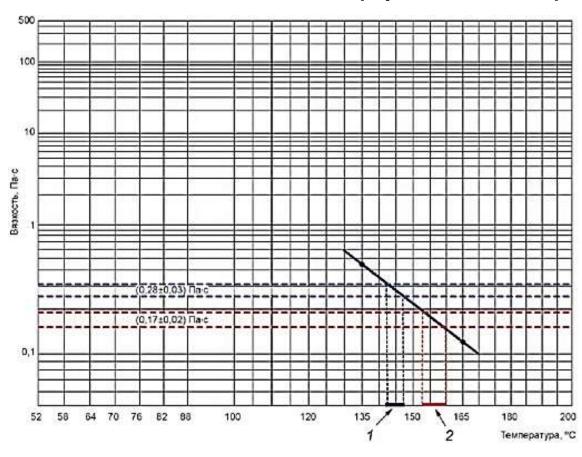
Реометр ротационный Kinexus DSR

ГОСТ 58406.2-2020 (Приложение В) – Подбор температур по значению вязкости

БНД 100/130 (1)

Значение вязкости, Па*с	0,32	0,31	0,25	0,19	0,15		
Значение температур, °С	135	136,1	140,9	146,2	152,2		
<u>БНД 100/130 (2)</u>							
Значение вязкости, Па*с	0,29	0,31	0,25	0,19	0,15		
Значение температур, °С	135	134,2	138,4	144,8	150,4		
<u>БНД 100/130 (3)</u>							
Значение вязкости, Па*с	0,35	0,31	0,25	0,19	0,15		
Значение температур, °С	135	137,7	142,1	148,6	154,2		

<u>ПБВ 90</u>								
начение язкости, Па*с	0,99	0,31	0,25	0,19	0,15			
начение	135	161,3	167,2	174,0	180,9			


температур, °С

<u>ПБВ 130</u>								
Значение вязкости, Па*с	0,51	0,31	0,25	0,19	0,15			
Значение температур, °C	135	145,1	152,1	160,8	166,8			

ГОСТ 58401.13-2019 (Приложение Б) – Графический метод определения

1 - диапазон температуры уплотнения; 2 - диапазон смешивания

- **1** Определить значения динамической вязкости при двух или более значениях температур в соответствии с ГОСТ 33137;
- **2** Выполнить построение графика зависимости динамической вязкости от температуры в логарифмических координатах в виде прямой линии:
 - **А.** На области построения отмечают точки, соответствующие значениям динамической вязкости при выбранных температурах, через них проводят прямую линию;
 - **Б.** Определяют отрезки графика, проекции которых на ось ординат соответствуют динамической вязкости (0,17±0,02) Па·с и (0,28±0,03) Па·с.

Рекомендуемые температуры определения динамической вязкости 135°C и 165°C.

ГОСТ 58406.2-2020 (Приложение В) – Расчётный метод

1

Сдвиговая устойчивость исходного образца при температуре верхнего значения марки битумного вяжущего (T_1) и значение динамической вязкости (η_2) при T_2 =135°C

Значение сдвиговой устойчивости (исходного битумного вяжущего) переводят в значение динамической вязкости (η_1) по корреляционной формуле: $\eta_0 = (G^*/\sin\delta) \cdot 100$

2

Значения динамической вязкости (η_1 , η_2) при двух температурах (Рекомендованы T_1 =135°C и T_2 =165°C)

Вычисление температурных диапазонов, соответствующих данным интервалам динамической вязкости. Для выполнения указанных вычислений напрямую требуется специальная вычислительная техника и программное обеспечение.

СПАСИБО ЗА ВНИМАНИЕ!

